sec-butyl and 5-ethyl-5-(1-methylbutyl) barbituric acids. Crystals of these compounds have been shown to have structures which closely resemble amobarbital II (Craven \& Cusatis, unpublished). However, it is unlikely that barbiturates substituted with unbranched chains at $\mathrm{C}(5)$ could have a double ribbon structure because the chain packing would be very inefficient. A double ribbon structure is not found in barbital I, II or IV* (Craven, Vizzini \& Rodrigues, 1969). More work is needed to determine the extent to which chain length in a $C(5)$ substituent affects the occurrence of double ribbons in barbiturate crystal structures. It is probable that length is a less critical factor than cross sectional area.

Solid solutions and molecular complex formation have been reported in many binary systems of 5,5'dialkylbarbiturates (Brandstätter-Kuhnert \& Vlachopoulos, 1967). This suggests the existence of hydrogen bonded frameworks in the solid state which are not greatly perturbed when one barbiturate is substituted for another. The double ribbon structure is well suited to this role, and in fact occurs in solid solutions in at least one such binary system (amobarbital/vinbarbital; Craven \& Cusatis, unpublished).

This work was supported by a grant NB-02763 from the U.S. Public Health Service, National Institutes of Health. The IBM 7090 and 1620 computer programs used, except for those specifically acknowledged, were

[^0]assembled and modified by Dr R.Shiono, Crystallography Laboratory, University of Pittsburgh.

References

Abrahamsson, S. (1959). Ark. Kemi, 14, 65.
Bartell, L. S. \& Kohl, D. A. (1963). J. Chem. Phys. 39, 3097.

Beurskens, P. T. (1963). Technical Report, Crystallography Laboratory, University of Pittsburgh.
Brandstätter-Kuhnert, M. \& Aepkers, M. (1962). Mikrochim. Acta, p. 1055.
Brandstätter-Kuhnert, M. \& Vlachopoulos, A. (1967). Mikrochim. Acta, p. 201
Busing, W. R. \& Levy, H. A. (1964). Acta Cryst. 17, 142.
Cleverley, B. \& Williams, P. P. (1959). Tetrahedron, 7, 277.

Craven, B. M., Cusatis, C., Gartland, G. L. \& Vizzini, E. A. (1968). Unpublished.

Craven, B. M. \& Mascarenhas, Y. (1964). Acta Cryst. 17, 407.

Craven, B. M. \& Sabine, T. M.(1969). Acta Cryst. B25, 1970.
Craven, B. M., Vizzini, E. A. \& Rodrigues, M. M. (1969). Acta Cryst. B25, 1978.

Johnson, C. K. (1965). Tech. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Karle, J., Hauptman, H. \& Christ, C. L. (1958). Acta Cryst. 11, 757.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
Ries, H. E. \& Соок, H. D. (1954). J. Colloid Sci. 9, 535.
Stewart, J. M. (1964). Technical Report Tr-64-6 (NSF398). Computer Science Center, Univ. of Maryland and Research Computing Center, Univ. of Washington.
Vizzini, E. A. (1968). Ph. D. Thesis, University of Pittsburgh.
Williams, P. P. (1959). Anal. Chem. 31, 140.

A Neutron-Diffraction Study of Perdeuteronaphthalene

By G.S.Pawley and Elizabeth A. Yeats
Department of Natural Philosophy University, of Edinburgh, Edinburgh 8, Scotland

(Received 16 November 1968)
The crystal structure of perdeuteronaphthalene, $\mathrm{C}_{10} \mathrm{D}_{8}$, is very similar to that of $\mathrm{C}_{10} \mathrm{H}_{8}$. The space group is $P 2_{1} / a$ with $a=8.266 \pm 0.008, b=5.968 \pm 0.006, c=8.669 \pm 0.008 \AA ; \beta=122.92 \pm 0.02^{\circ} .331$ independent observations give an R value of $5 \cdot 2 \%$ in a refinement where the anisotropic temperature factors were fixed at the best values obtained with the use of the rigid-body thermal-motion constraint, and the positional parameters were constrained to the mmm symmetry of the free molecule. Statistical tests showed that no significant improvement is possible on removing the constraints. Consequently, the molecular geometry resulting from the constrained refinements was better determined than it would have been from a conventional unconstrained refinement.

Introduction

The present investigation of the crystal structure of perdeuteronaphthalene, $\mathrm{C}_{10} \mathrm{D}_{8}$, is part of the study of the lattice dynamics of molecular crystals. Measurement of phonon frequencies is best done with neutron
inelastic coherent scattering. Hydrogen is a very strong incoherent scatterer, and for this reason fully deuterated crystals are preferred.

Calculations have been made of phonon frequencies in naphthalene by Pawley (1967), with the use of the crystal structure of $\mathrm{C}_{10} \mathrm{H}_{8}$ as determined by X-ray dif-
fraction (Cruickshank, 1957). We expected a slight change in crystal structure on deuteration and this we wished to find. Neutron diffraction affords a method of accurate determination of nuclear positions and is ideal for obtaining a starting point for lattice dynamical calculations.

The easiest of these calculations to make involves rigid-body motion of the molecules. Consequently when the diffraction data are used to refine the crystal structure, a structure-factor least-squares (SFLS) procedure incorporating a rigid-body thermal parameter constraint is appropriate (Pawley, 1964). If the assumption of molecular rigidity is valid we would expect the molecules to retain in the crystal the symmetry they have in the free state. Consequently another constrained SFLS refinement is of interest, in which the molecules are kept to mmm symmetry in the crystal although the molecular site is only centrosymmetric.

Experimental

A large single crystal of 98% deuterated naphthalene was grown by Dr Sherwood of the University of Strathclyde by the moving-vessel technique (Sherwood \& Thomson, 1960). A sphere of diameter 7 mm was cut from one end of the crystal, and was mounted with \mathbf{z}^{*} vertical, inside a sealed soda-glass bulb to reduce sublimation losses.

The mosaic spread of the crystal was 0.5° (full width at half height) which was thought to be sufficient for extinction effects to be small, therefore no shock cooling was attempted. Rapid cooling in liquid nitrogen tends to shatter large crystals of this sort.
The unit cell of $\mathrm{C}_{10} \mathrm{D}_{8}$ is slightly different from that of $\mathrm{C}_{10} \mathrm{H}_{8}$, being

$$
\begin{aligned}
& a=8.266 \pm 0.008 \AA \\
& b=5.968 \pm 0.006 \quad \text { in } P 2_{1} / a . \\
& c=8.669 \pm 0.008 \quad \text {. } \\
& \beta=122.92 \pm 0.02^{\circ} \quad \text {. }
\end{aligned}
$$

331 independent intensities were measured at $295^{\circ} \mathrm{K}$ on the Ferranti four-circle diffractometer on the DIDO reactor at Harwell. A number of equivalent reflexion pairs were measured and the average agreement was 1%. Table 1 contains the $\left|F_{\text {obs }}\right|$ used in the structure refinements.

Computational

No attempts were made to correct the data for absorption, extinction or thermal diffuse scattering. The maximum of absorption was 7%, owing mainly to the incoherent scattering from the 2% of hydrogen. The angular variation in absorption would be much smaller than this, giving a slight error to the mean-square translational displacement tensor T. We found no evidence of extinction when analysing the result of the refine-

Table 1. Observed and calculated structure factors
The columns are $h k l,\left|F_{\text {obs }}\right|, \mid F^{r \cdot b}$ calc \mid and $\mid F^{m m m}$ calc \mid.

 \qquad

 $A \omega \omega$

ment. A thermal diffuse scattering correction (Cooper \& Rouse, 1968) was not applied as this requires a reliable lattice dynamical model. The present study is a necessary step towards this goal. All refinements were based on $\left|F_{\text {obs }}\right|$ with unit weights.

The first refinements were carried out by the use of the rigid-body thermal-parameter constraint program (Pawley, 1964). With neutron scattering lengths of 0.66 and 0.65 for carbon and deuterium atoms the conventional R value reached $5 \cdot 30 \%$, dropping to $5 \cdot 10 \%$ when the scattering lengths for the deuterium positions were reduced to 0.63 to take account of the 2% of hydrogen remaining in the crystal.

Removing the thermal-parameter constraints gave no significant improvement at the 2% level of the F distribution, assuming that $\left(\frac{R \text { initial }}{R \text { final }}\right)^{2}$ is F distributed (Pawley, 1966).
We therefore list only the results of the constrained refinement. In Table 1 the calculated structure factors are listed as $\left|F_{\text {calc }}^{\text {r.b. }}\right|$. The mean square rigid-body translational and librational tensors are

$$
\begin{aligned}
\mathbf{T} & =\left[\begin{array}{llr}
4.84 & 0.20 & -0.09 \\
& 2.92 & -0.06 \\
2.29
\end{array}\right] \AA^{2} \times 10^{-2} \\
\sigma(\mathbf{T}) & =\left[\begin{array}{llr}
0.09 & 0.06 & 0.08 \\
& 0.08 & 0.08 \\
& 0.15
\end{array}\right] \AA^{2} \times 10^{-2} \\
\mathbf{L} & =\left[\begin{array}{rrr}
31.59 & -3.49 & 0.11 \\
& 18.45 & -1.16 \\
& & 19.12
\end{array}\right] \operatorname{deg}^{2} \\
\sigma(\mathbf{L}) & =\left[\begin{array}{llr}
1.98 & 0.78 & 1.05 \\
& 0.93 & 0.73 \\
& & 0.85
\end{array}\right] \operatorname{deg}^{2}
\end{aligned}
$$

[The use of \mathbf{L} instead of the $\boldsymbol{\omega}$ in the original paper (Cruickshank, 1956) seems now to be generally accepted]. The comparison of these tensors with the cal-
culations on $\mathrm{C}_{10} \mathrm{H}_{8}$ can only be rough, so we must wait for phonon measurements and an improved model before a good comparison can be made.

The nuclear fractional coordinates found in this refinement are listed in Table 2 under the columns headed $\overline{1}$ symmetry, the molecular site symmetry. The anisotropic temperature factors in this Table are those derived from \mathbf{T} and \mathbf{L} and the fractional coordinates just mentioned.

The nuclear positions in the coordinate system defined by the inertia axes of the molecule are given in Table 3. The z coordinates are deviations from the plane perpendicular to the axis of greatest inertia. This is the mean molecular plane weighted heavily by the carbon positions. The least-squares standard deviations are 0.0055 and $0.0079 \AA$ for the carbon and deuterium atom positions respectively. The deviations from the mean molecular plane are no more than one standard deviation for the carbon atoms, but about two standard deviations for two of the deuterium atoms. We need to know whether this is evidence for molecular distortion or whether the deviations are insignificant.

To answer this question we should analyse the deviations from mmm symmetry, the symmetry of the molecule in the free state. Column 2 of Table 3 shows the x and y coordinates for the symmetry averaged molecule. We see that in three of the eight coordinate pairs averaged, namely $\mathrm{C}_{x}(A \& E), \mathrm{C}_{y}(A \& E)$ and $D_{x}(b \& d)$, the individuals differ by about three standard deviations. The following analysis shows, however, that these deviations are insignificant.

The most valid test of molecular strain from mmm symmetry is given by comparing the results of refinements with and without the symmetry imposed. A new program was written to apply the molecular symmetry constraint throughout the SFLS refinement. The procedure which has been described by Pawley (1969) has been followed. A relatively small number of additions have been made to the usual basic least-squares program with the use of the Editor system, written by Dr J.G.Burns of Edinburgh. Unfortunately, the rigidbody thermal parameter constraint program is not

Table 2. Fractional coordinates of the molecule with and without the symmetry constraint, and the thermal parameters for the expression $\exp \left[-10^{-4}\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+2 k l b_{23}+2 l h b_{31}+2 h k b_{12}\right)\right]$ obtained with the rigid body thermal parameter constraint.

	mmm symmetry			I symmetry			Rigid body					
	x / a	y / b	z/c	x / a	y / b	z/c	b_{11}	b_{22}	b_{33}	b_{23}	b_{31}	b_{12}
$\mathrm{C}(\mathrm{C})$	0.0482	$0 \cdot 1030$	0.0359	0.0480	$0 \cdot 1035$	$0 \cdot 0352$	116	163	174	-10	69	0
$\mathrm{C}(B)$	$0 \cdot 1149$	$0 \cdot 1606$	$0 \cdot 2205$	$0 \cdot 1155$	$0 \cdot 1591$	0.2206	202	250	187	- 50	87	-31
$\mathrm{C}(\mathrm{D})$	0.0761	0.2476	-0.0782	0.0755	0.2487	-0.0777	190	200	235	15	118	-18
$\mathrm{C}(\mathrm{A})$	0.0857	0.0174	0.3267	0.0857	$0 \cdot 0164$	$0 \cdot 3260$	262	357	181	-12	115	3
$\mathrm{C}(E)$	0.0099	$0 \cdot 1869$	-0.2555	0.0088	$0 \cdot 1876$	-0.2566	251	311	228	52	145	16
$\mathrm{D}($ b)	$0 \cdot 1883$	0.3185	0.2733	$0 \cdot 1878$	0.3178	0.2718	328	314	253	-119	126	-110
$\mathrm{D}($ d $)$	$0 \cdot 1499$	$0 \cdot 4043$	-0.0213	$0 \cdot 1511$	0.4053	-0.0219	307	232	338	-6	182	-89
$\mathrm{D}($ a)	$0 \cdot 1368$	$0 \cdot 0627$	0.4665	$0 \cdot 1353$	0.0630	$0 \cdot 4650$	432	561	197	-42	163	-17
$\mathrm{D}(e)$	0.0318	$0 \cdot 2978$	-0.3408	0.0327	$0 \cdot 2972$	-0.3414	402	448	311	113	238	14

written in the Editor system, so both constraints are not possible simultaneously at present.

The number of parameters needed to determine the nuclear positions for the full-symmetry molecule is 12 , compared with 27 in the unconstrained case. Nine of these parameters are indicated in Fig. 1, the remaining three being the three Euler angles necessary to form the rotation matrix which puts the molecule in the correct orientation. This matrix is formed as described by Pawley (1969) and the rotated molecule is then transformed to crystal fractional coordinates by the matrix

$$
\left(\begin{array}{ccc}
\frac{1}{a} & 0 & \frac{-\cot }{a} \beta \\
0 & \frac{1}{b} & 0 \\
0 & 0 & \frac{\operatorname{cosec}}{c} \beta
\end{array}\right)
$$

The best starting values for the Euler angles were

$$
\begin{aligned}
& \varphi=-1.1707^{\circ} \\
& \theta=4.3952 \\
& \psi=2.0597
\end{aligned}
$$

Refinement was carried out by anisotropic temperature factors fixed at the values obtained from the rigid body thermal parameter constraint. The R value reached was $R=5 \cdot 15 \%$, with

$$
\begin{aligned}
& \varphi=-1 \cdot 1707 \pm 0.0008^{\circ} \\
& \theta=4.3946 \pm 0 \cdot 0010 \\
& \psi=2.0592 \pm 0.0012
\end{aligned}
$$

The calculated structure factors are given in Table 1 under the heading $\left|F_{\text {calc }}^{m m m}\right|$.
The atomic coordinates are listed in Tables 2 and 3. This R value is not significantly worse than $R=5 \cdot 10 \%$, obtained with the thermal parameter constraint but no symmetry constraint.

When the thermal parameters were allowed to vary independently, the R value dropped to $R=4.98 \%$. This improvement is not significant on the 25% level of the F distribution, and the results are therefore not given here.

We see in Fig. 1 the large difference between the lengths of the bonds $\mathrm{C}(C)-\mathrm{C}(D)$ and $\mathrm{C}(D)-\mathrm{C}(E)$. Although this is in agreement with the X-ray result on $\mathrm{C}_{10} \mathrm{H}_{8}$ (Cruickshank, 1957), it is instructive to test the significance of this variation with yet another constrained refinement. Let us take a model for the molecule determined by two parameters, the $\mathrm{C}-\mathrm{C}$ and the C-D bond lengths. Assume that both rings are perfect hexagons with the $\mathrm{C}-\mathrm{D}$ bonds pointing radially from the hexagon centres. All the atomic positions in the crystal are now determined by five parameters, the two bond lengths and the three Euler angles.

Fig.1. The molecule of naphthalene. The capital letters denote the carbon atoms, the small letters the deuterium atoms. The bold arrows indicate the positional parameters consistent with the molecular symmetry. The bond lengths and angles and their errors come from the refinement incorporating the molecular symmetry and using the rigid-body thermal parameters, and are uncorrected for librational motion.

Table 3. Coordinates of the molecule in \AA
The last columns contain unconstrained coordinates transformed into the inertia axes coordinate system.

Atom	Constrained mmm molecule	Best mmm molecule from next 2 columns	Centrosymmetric molecule, thermal parameter constraint	Atom
$\mathrm{C}(\mathrm{C})$	${ }^{-}$	-	-0.0088	X
	0.7060	0.7060	0.7076	Y coordinates
	-	-	-0.0015	Z
	$1 \cdot 2420$	1.2399	1.2368-1.2429	
$\mathrm{C}(B)$	1-3995	1.3987	$1.3982-1.3991$	C(D)
	-	-	$0.0055-0.0055$	
	$2 \cdot 4219$	$2 \cdot 4220$	$2.4133-2.4307$	
$\mathrm{C}($ A	$0 \cdot 7004$	$0 \cdot 6970$	$0.7046 \quad 0.6894$	$\mathrm{C}(E)$
	-	-	$-0.0008-0.0031$	
	1.2252	1.2252	$1.2043-1.2461$	
$\mathrm{D}(b)$	2.4781	$2 \cdot 4782$	$2.4764 \quad 2.4800$	D (d)
	-	-	-0.0005 0.0095	
	3.3575	3.3577	$3.3453-3.3700$	
$\mathrm{D}\left({ }^{\text {a }}\right.$	$1 \cdot 2359$	1-2332	$1.2458 \quad 1.2205$	D(e)
	${ }_{0}^{-}$	-	$-0.0154 \quad 0.0155$	
C	0.0033	Standard	0.0055	
D	$0 \cdot 0046$	deviations	$0 \cdot 0079$	

A constrained refinement was carried out, giving $\mathrm{C}-\mathrm{C}=1.4056 \pm 0.0015 \AA$ and $\mathrm{C}-\mathrm{D}=1.073 \pm 0.003 \AA$, but the R values obtained by the rigid-body thermal parameters and then by variable thermal parameters were 6.0 and 5.8% respectively. These are both significantly poorer than previous R values on the 2% level of the F distribution. We therefore conclude that the extra constraint is not realistic, and that the difference between the $\mathrm{C}(C)-\mathrm{C}(D)$ and $\mathrm{C}(D)-\mathrm{C}(E)$ bonds found earlier is highly significant.

Conclusion

From our statistical tests we have found no evidence of deviation from either the rigid-body thermal motion model or the full-molecular-symmetry model. We have not attempted to fit the third or fourth cumulants introduced by Johnson (1969) but to the approximation of second cumulants (the usual approximation) we should have optimized our molecular geometry determination by applying these physically reasonable constraints. Indeed, we see that the standard deviations for the positional parameters are considerably diminished by the symmetry constraint, giving bond lengths and angles with errors as shown in Fig.1. An attempt to simplify the model further gave a significantly poorer fit, indicating that the C-C bonds differ significantly in length.

We have presented three different constrained refinements specifically to answer three separate questions. The task of combining these constraint procedures in
one general program is great indeed, but a system where this is possible should be aimed at. In the present example the symmetry constraint gave the least change in the R value, the symmetry information being incorporated in the SFLS refinement. This is in contrast to the recent work of Maslen (1968) where this assumed symmetry information is used in 'phase refinement' after the fitting procedure is concluded. It will be of interest to investigate the 'phase refinement' by the use of the results of a symmetry constrained refinement.

We wish to thank Dr John Sherwood of Strathclyde University for growing the crystal, Mr George Paul for help in collecting the diffraction data, and the SRC for the award of a research studentship to one of us (E.A.Y.). Finally we wish to thank Professor W. Cochran for his continued interest in this work.

References

Cooper, M. J. \& Rouse, K. D. (1968). Acta Cryst. A 24, 405. Cruickshank, D. W. J. (1957). Acta Cryst. 10, 504.
Johnson, C. K. (1969). To be published.
Maslen, E. N. (1968). Acta Cryst. B24, 1165.
Pawley, G. S. (1964). Acta Cryst. 17, 457.
Pawley, G. S. (1966). Acta Cryst. 20, 631.
Pawley, G. S. (1967). Phys. Stat. Sol. 20, 347.
Pawley, G. S. (1969). Acta Cryst. A25, 531.
Sherwood, J. N. \& Thomson, S. J. (1960). J. Sci. Instrum. 37, 242.

The Structure of Bis- π-cyclopentadienyl(toluene-3,4-dithiolato)molybdenum

By J.R.Knox* and C.K. Prout
Chemical Crystallography Laboratory, South Parks Road, Oxford, England

(Received 11 November 1968)
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoS}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{3}$ crystallizes in space group $P 2_{1} / n$ with $a=14.97 \pm 0 \cdot 01, b=17 \cdot 69 \pm 0 \cdot 01, c=$ $12.63 \pm 0.01 \AA, \beta=115 \cdot 5 \pm 0.2^{\circ}$ and $Z=8$. One of the two molecules is disordered as a result of the presence of both enantiomers in the same site. The least-squares refinement with isotropic temperature factors gave an R value of 0.098 for 3549 observed photographic data. The coordination symmetry about molybdenum approximates to $C_{2 v}$; the dithiol plane nearly bisects the 132.5° angle between normals to cyclopentadienyl rings, which have a staggered configuration. The average Mo-S distance in the ordered molecule is $2 \cdot 433 \pm 0.005 \AA$.

Introduction

In a molecular orbital description of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MX}_{2}$ compounds Ballhausen \& Dahl (1961) suggested that the lone pair of electrons lies between the two bonding

[^1]orbitals in a plane between the cyclopentadienyl rings. Their belief that the rings need not be parallel was verified by the structure determination of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{MoH}_{2}$ (Gerloch \& Mason, 1965), but the angle between Mo-H bonds was not firmly established (Abrahams \& Ginsberg, 1966). To clarify the geometry of these compound we determined the structure of bis- π-cyclopendadienyl-(toluene-3,4-dithiolato)molybdenum:

[^0]: * The crystal structure of barbital IV has not yet been determined, but the lattice translations are incompatible with a double ribbon structure.

[^1]: * Present address: Department of Molecular Biophysics, Yale University, New Haven, Conn., U.S.A.

